Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells.
نویسندگان
چکیده
One of the important targets in regenerative medicine is to design resorbable materials that can promote formation of new bone in large skeletal defects. One approach to this challenge is to use a bioactive and biodegradable organic matrix that can promote cellular adhesion and direct differentiation. We have here studied matrices composed of peptide amphiphiles (PAs) that self-assemble into nanofibers and create self-supporting gels under cell culture conditions. The bioactivity of PAs was designed by incorporating in their peptide sequences phosphoserine residues, to promote hydroxyapatite formation in the culture medium, and the cell adhesion epitope RGDS. In osteogenic medium supplemented with calcium the PA nanofibers were found to nucleate spheroidal nanoparticles of crystalline carbonated hydroxyapatite approximately 100 nm in diameter. This mineralization mode is not epitaxial relative to the long axis of the nanofibers and occurs in the presence of serine or phosphoserine residues in the peptide sequence of the amphiphiles. Mixing of the phosphoserine-containing PAs with 5 wt.% RGDS-containing PA molecules does not inhibit formation of the mineral nanoparticles. Quantitative real time reverse transcription polymerase chain reaction and immunohistochemistry analysis for alkaline phosphatase (ALP) and osteopontin expression suggest that these mineralized matrices promote osteogenic differentiation of human mesenchymal stem cells. Based on ALP expression, the presence of phosphoserine residues in PA nanofibers seems to favor osteogenic differentiation.
منابع مشابه
The effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells
Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملPara-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization
Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2012